APPALACHIAN STORAGE HUB (ASH) FOR LIQUID ETHANE

QUARTERLY REPORT

November 2016 – January 2017

Submitted By

APPALACHIAN OIL & NATURAL GAS RESEARCH CONSORTIUM

National Research Center for Coal & Energy

Ohio Geological Survey

Pennsylvania Geological Survey

West Virginia Geological Survey

FEBRUARY 2017

1.0 INTRODUCTION

The Appalachian Oil & Natural Gas Research Consortium (Consortium) has reached the midpoint in their one-year Appalachian Storage Hub (ASH) for Liquid Ethane Study (the Study) to identify potential reservoirs for the storage of liquid ethane and other products derived from the liquid-rich Marcellus and Utica shale plays. The main goal of the study is to locate the best options for storage in close proximity to a proposed pipeline from the areas of shale production in southwestern Pennsylvania to end users in southern West Virginia and northeastern Kentucky. Essentially, this pipeline would follow the Ohio and Kanawha rivers.

The project is being funded by a grant from the Benedum Foundation to the West Virginia University Foundation, with matching funds from industry partners and cost share from the state geological surveys in Ohio, Pennsylvania and West Virginia (OGS, PAGS and WVGES).

During the initial quarter of the study (August 1 – October 31, 2016) the efforts of the Consortium were concentrated on: defining the area of interest (AOI; see Appendix 6.1); data collection within the AOI; development of a project database and website; and correlation of subsurface units ranging from Mississippian Greenbrier Limestone to Upper Cambrian Gatesburg Formation.

Individual formations and intervals of interest include the Greenbrier Limestone for subsurface mining; the Salina salt for the creation of cavities through brine extraction; and depleted gas fields in sandstone reservoirs in the Lower Mississippian (Keener to Berea interval); Upper Devonian (Bradford, Venango and/or Elk intervals), Lower Devonian (Oriskany Sandstone); Lower Silurian (Clinton-Medina and Tuscarora sandstones); Lower Ordovician (Rose Run Formation); and Upper Cambrian (Gatesburg Formation and Upper Sandy member). These intervals are depicted in the Study's regional subsurface rock correlation diagram provided in Appendix 6.2.

Milestones for the second quarter were to:

- Complete the Stratigraphic Correlation of Key Units (Strategy 2)
 - Complete correlation of key logs for cross sections through all stratigraphic intervals of interest
- Initiate the mapping program for all potential storage units (Strategy 3)
 - Maps to include thickness and areal distribution in the AOI and net sand (net-togross) maps
 - Structure maps to be included, as needed
- Initiate the Studies of Reservoir Character (Strategy 4)
 - Identify previous petrographic studies of cores and thin sections
 - Identify and assemble additional well log and core analyses
 - Continue to populate the project database

All milestones were met during the second calendar quarter of the project (see Appendix 6.3 for the project's milestone chart), although log correlations continue to be refined and mapping is continuing. Details follow in the Research Section.

2.0 RESEARCH

Second quarter project efforts focused on indexing and organizing geologic data relevant to the AOI for use by the Research and Advisory Group members; compiling and correlating additional well header, raster logs, digital curves and subsurface formation tops data; preparing cross sections and preliminary maps for geologic intervals of interest; and identifying and compiling relevant reservoir characterization information.

6.1 Data Collection & Database Creation

2.1.1 Study Website

A prototype website was created during the first quarter of the Study, and is updated regularly with information received from Research Team and Advisory Group members (see the complete list of Study members in Appendix 6.4). The website also is being redesigned, and will be presented at the March 2017 Partners meeting. Information that is periodically received and updated includes:

- PETRA[®] project files with digital logs (.las files) and well log correlations. The tops and logs submitted by each state geological survey will be assimilated into the Master PETRA[®] Project by OGS;
- Geophysical logs, including newly-digitized logs created from raster images in key areas and/or high-priority reservoir targets; and
- Annotated bibliography entries for relevant publications. These may include final reports from other basin-scale cooperatives, current literature and historical publications.

6.2 Stratigraphic Correlations and Mapping

Second quarter research efforts focused on the preparation, review and interpretation of well log data available for the AOI, as well as correlation of certain intervals across the Study area. As technical lead for the stratigraphic correlation and mapping work, OGS imported well data and formation tops provided by all three states into the Study's Master PETRA[®] project database. OGS performed a quality assurance/quality control review of both digital geophysical log curves and raster log images. Log corrections and depth registration were completed, as necessary. The digital data contained in this PETRA[®] project were then used to vet and refine correlations of the seven intervals of interest for the Study.

Particular emphasis was given to the stratigraphic correlation of the Greenbrier, Keener to Berea, Upper Devonian sandstones and Salina Group intervals during the second quarter (Appendix 6.2). PAGS refined its interpretation and correlation of the Greenbrier Limestone and equivalent units (e.g., Wymps Gap and Loyalhanna limestone members; see Figure 2.2.1) in the Pennsylvania portion of the AOI. In West Virginia, the Greenbrier is commonly known by the drillers term "Big Lime." The extensive carbonate is conformably underlain in places by a siliciclastic unit, which is often confused with older, unconformitybound sandstones of the Price Formation (Figure 2.2.1). In West Virginia, drillers' terms for depleted gas reservoirs from this portion of the section include the Keener, Big Injun, Squaw and Weir sands. The extent, thickness and nature of facies relationship vary significantly throughout the AOI. Correlations follow type log characteristics as outlined in the Atlas of Major Appalachian Gas Plays (Roen and Walker, 1996). For the purposes of this Study, the limestone units will be considered separately from the siliciclastic units, regardless of age, due to the different storage reservoir types (mined caverns versus intergranular porosity).

Sub-British Stages	Russian Horizons	Sub-Belgian Stages	Chinese Series	Glo Su sys	b-	Glo Sta (W. Eu	bal ige irope)	Ame Sta	rth rican ges/ ries		Virginia	West V	firginia	Ohio	Pennsylvania	Pennsylvani Anthracite Basins			
Amsbergian	Zapaltyubinsky- Protvinsky	Amsbergian			Upper	SERPUKHOVIAN	LATE		u	1	Bluestone Formation	Bluer	ation 3			/			
Pendleian	Steshevsky- Tarussky	Pendleian			0	SERPL	EARLY	RIAN	Elviran	nnington Fm	Hinton Formation	Hint Forma	on 15		Mauch Chunk Formation	{			
Brigantian	Venevsky							CHESTERIAN	HESTE	Pe	Bluefield Formation	Bluefi Forma	eld tion		[
110	Mikhailovsky	Warnantian							Homb				Greenbrier Limestone	Maxville Limestone	Wymps Gap Ls.				
Asbian	Aleksinsky		N						Genevievian Gasperan				Gree	(part) Maxvile Ls.	Loyathama				
Holkerian	Tulsky	Livian	DATANGIAN	MISSISSIPPIAN (Lower Carboniferous)	Middle	VISÉAN	LATE	(N)	MERAMECIAN	Newman Limestone	Greenbrier Limestone	Greenbrier Group		Maxville Ls. (part)		Mauch Chur Formation			
Arundian	Bobrikovsky Radaevsky	Moliniacian		MISSISSIPE			EARLY	(VALMEYERAN)	OSAGEAN	After Palue	Maccrady Shale	Maccrady Formation			Burgoon	Mt.			
Chadian	Kosvinsky								8		Price			Logan	Sandstone	Carbon Mbr.			
Courceyan	Kizelovsky	Ivorian			wer		COWER			LATE				Formation		-	Formation	EFE S	Beckville
	Cherepetsky- Karakubsky		AIKUANIAN			wer					-		Pocono	Group/Formation	Cuyahoga Formation	Riddesburg Shale Rockwell Formation Huntley Mountain Formation	Beckville Member		
encounter ant	Upinsky	Hastarian	AIKL		2	TOUR		EARLY	ER-	KIAN		Big Stone Gap Mbr., Chattanooga Shale		Ga	Sunbury	Idesburg Shale	3		
	Malevsky						ш	KINDER-	ЮОН		Chattano			Shale	Riddlesburg Shale Rockwell Form	22			
	Gumerovsky										Chat Chat				S I	Spechty Kop			

Figure 2.2.1. Mississippian stratigraphy of the study area (Ettensohn, 2009).

In addition, due to the number and sometimes complex nature of Upper Devonian sandstone reservoirs, the pseudo-chronostratigraphic framework suggested in the Atlas of Major Appalachian Gas Plays (Roen and Walker, 1996) was used to simplify the correlation and mapping of Upper Devonian depleted gas reservoirs (Figure 2.2.2).

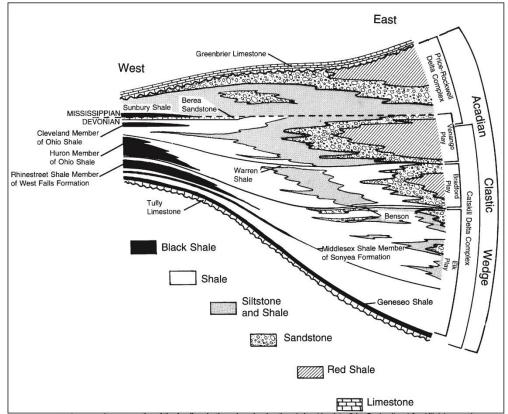


Fig. 2.2.2. Pseudo-chronostratigraphic cross section from the Atlas of Major Appalachian Gas Plays (Roen and Walker, 1996), showing the chronostratigraphic equivalents of the Acadian clastic wedge across the basin.

Finally, correlations of Silurian-age units, including the Salina Group's bedded evaporite-dolomite succession and age-equivalent Newburg sandstone, were refined in Ohio, Pennsylvania and West Virginia during the second quarter. In West Virginia, the Salina Group (as a whole) is thickest in the northwestern part of the state in counties adjacent to the Ohio border (Figure 2.2.3). Looking at individual Salina salt members, OGS prepared a preliminary north-south geologic cross section, and WVGES prepared some state-specific extent maps and cross sections (Appendix 6.5). Ohio's longitudinal line of section illustrates that approximately 100 feet (ft) of salt are present along the Ohio River Valley corridor. Correlation and preliminary mapping of the stratigraphically older Newburg sandstone by WVGES shows that this sandstone unit is present in southern West Virginia and can be up to 20 ft thick in some areas (Figure 2.2.4).

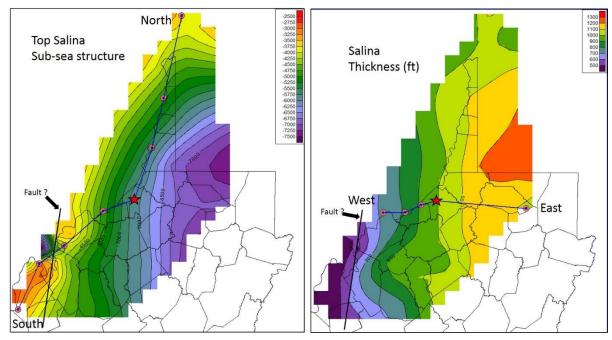


Figure 2.2.3. Preliminary Salina Group structure contour (left) and isopach (right) maps.

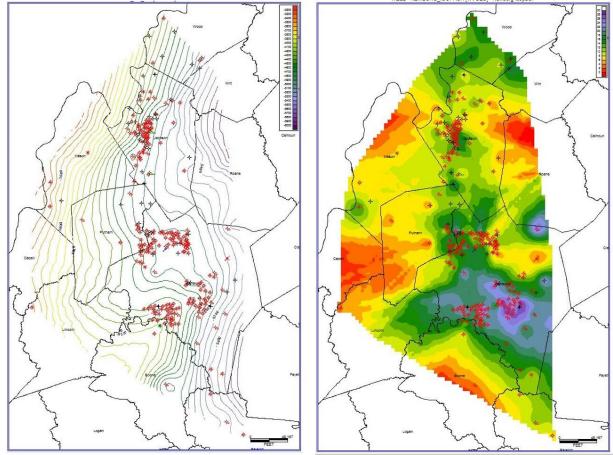


Figure 2.2.4. Preliminary Newburg sandstone structure contour (left) and isopach (right) maps.

Stratigraphic correlation activities were followed by the generation of preliminary draft subsurface structure (i.e., true vertical depth subsea elevation) and gross isopach (i.e., apparent thickness) maps for three of the AOI's intervals of interest: Greenbrier Limestone, Venango sands and Salina F salt. Subsurface structure maps utilized a 100-ft contour interval, while the isopach maps utilized contour intervals ranging from 10 to 50 ft, depending on individual formation characteristics. In addition, the Salina F salt isopach map illustrates net (i.e., true) thicknesses, as this mapped interval is interpreted to be entirely comprised of salt.

Figures 2.25 and 2.26 present the subsurface structure and gross isopach maps for the Greenbrier Limestone, respectively. This interval is present through much of the AOI, apart from certain Ohio counties along the western limit of the study area. Based on Figure 2.26, the apparent thickness of the Greenbrier Limestone varies from 0 to more than 150 ft. These data will be reviewed and refined in the coming quarter to better constrain the AOI's most prospective area(s) for creating a mined-rock cavern for storing ethane.

Figures 2.27 and 2.28 present the subsurface structure and gross isopach maps for the Venango Group sands, respectively. This is one of three dominantly sandstone packages included in the larger Upper Devonian sandstone interval, and is present throughout the entire AOI. As shown in Figure 2.28, the apparent thickness of the Venango sands interval ranges from less than 100 ft to approximately 1,500 ft, but the actual thickness of depleted gas-producing sand reservoirs within this interval is known to be much less. The Research Team will be refining these data during the next quarter, as net sand computations will be included in the Reservoir Characterization task.

Figures 2.29 and 2.30 present the subsurface structure and net isopach maps for the Salina F Salt (of the Salina Group). Based on Figure 2.30, this particular salt unit is generally restricted to the panhandle of West Virginia in the northern portion of the AOI. Here, the F Salt ranges from 0 to about 100 ft thick, with some areas potentially reaching 150 ft in thickness. These data will be reviewed and refined in the coming quarter to better constrain the AOI's most prospective area(s) for creating one or more salt caverns for storing ethane.

Regional correlation and mapping activities for these and the remaining intervals of interest will continue into the Study's third quarter.

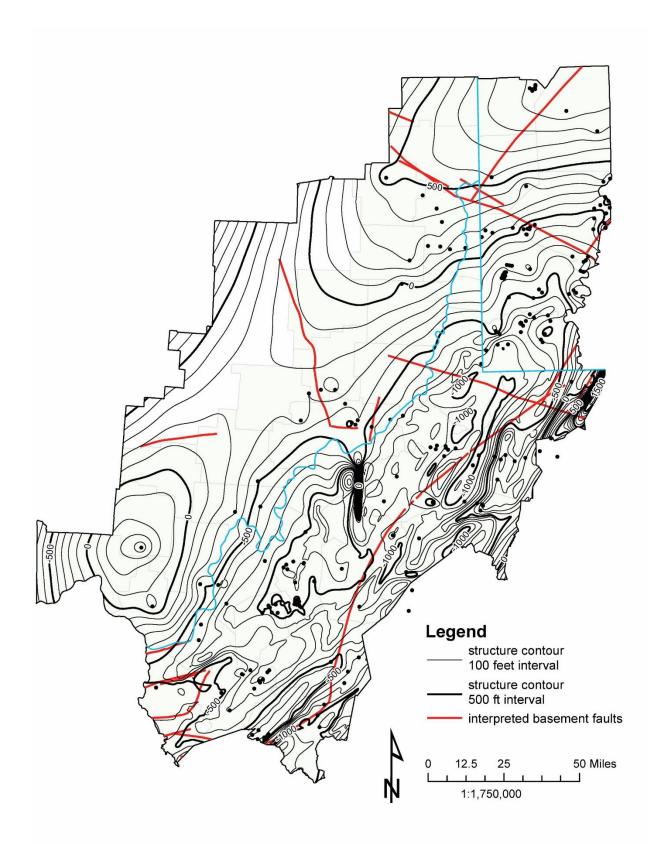
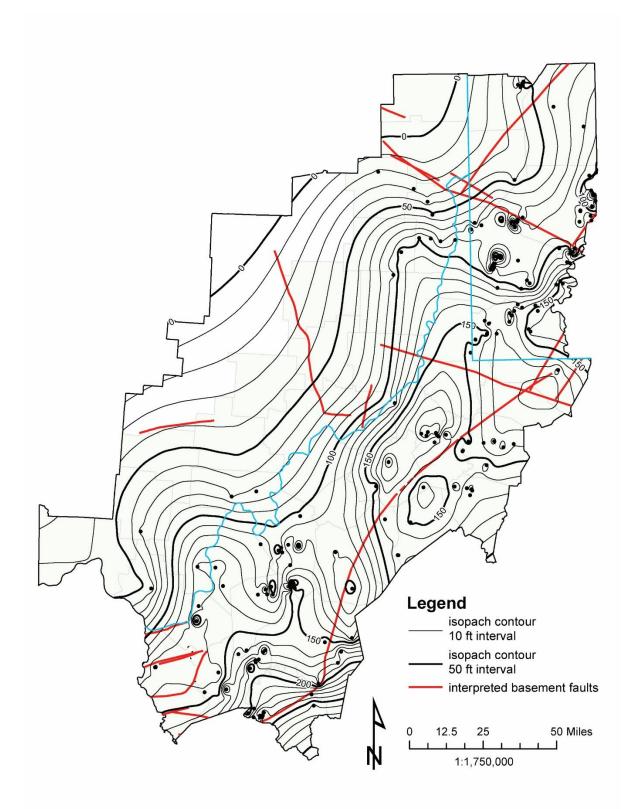
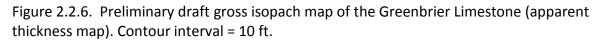




Figure 2.2.5. Preliminary draft structure contour map of the Greenbrier Limestone (true vertical depth subsea elevation map). Contour interval = 100 ft.

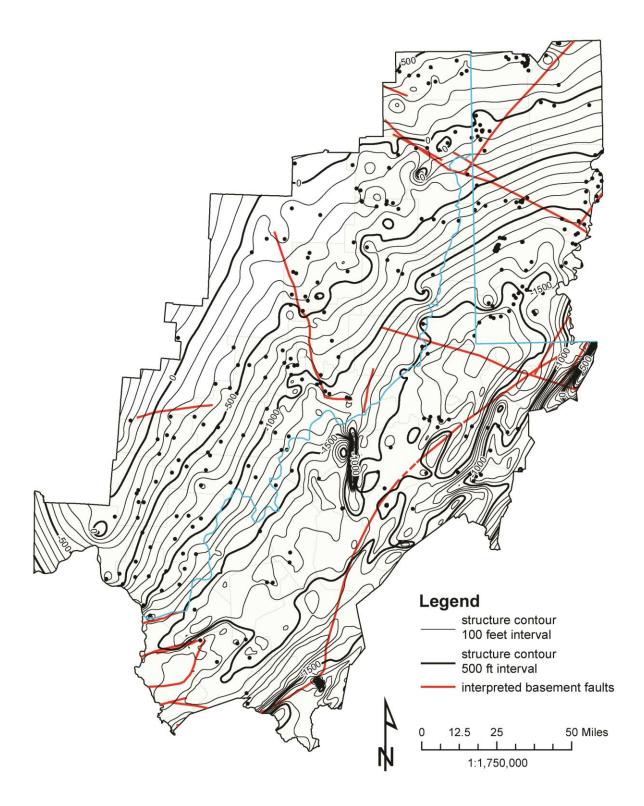
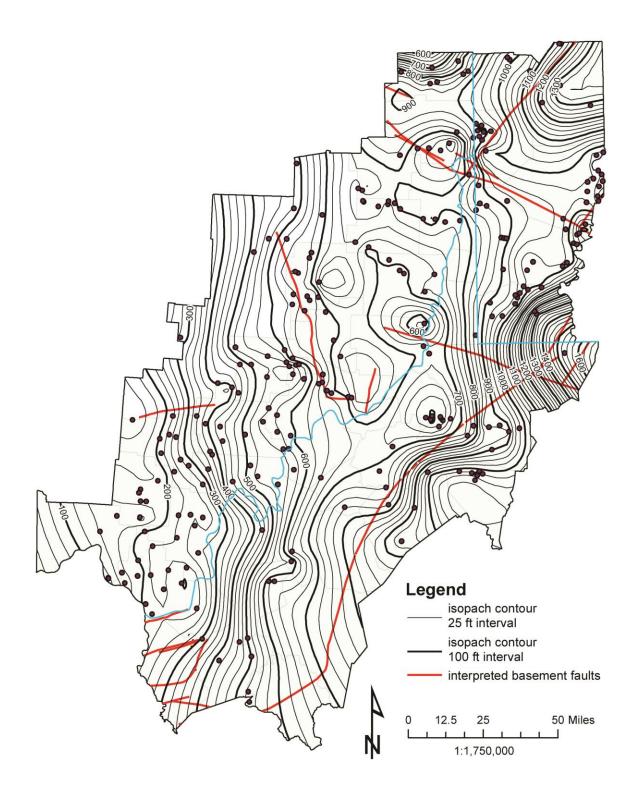
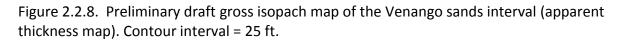
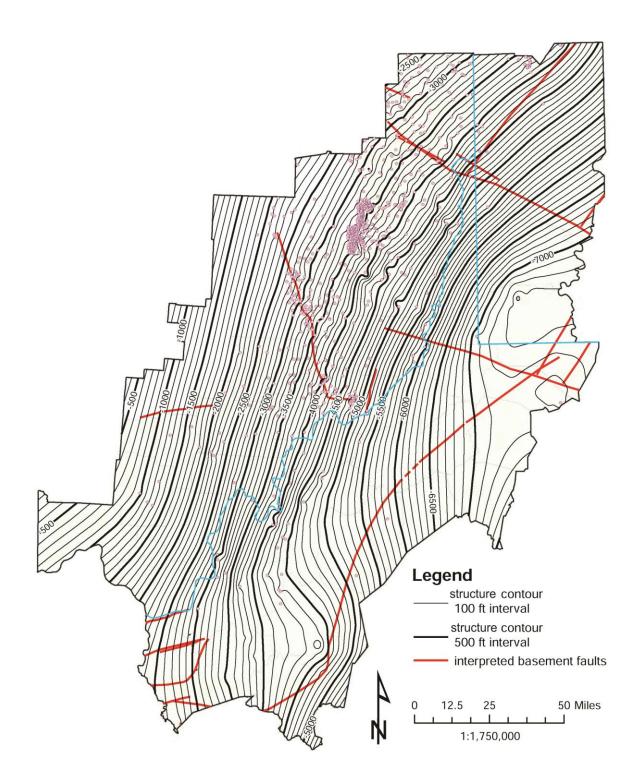
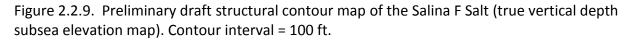






Figure 2.2.7. Preliminary draft structural contour map of the Venango sands interval (true vertical depth subsea elevation map). Contour interval = 100 ft.

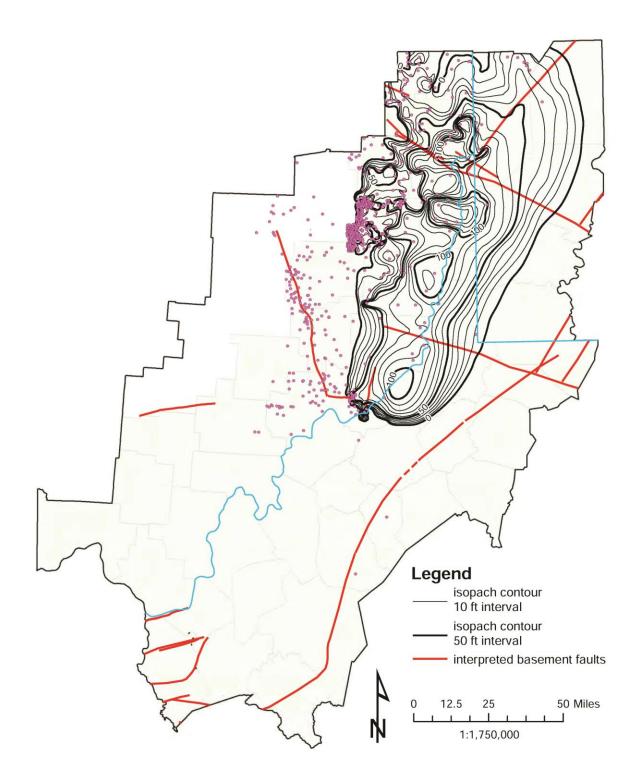


Figure 2.2.10. Preliminary draft net isopach map of the Salina F Salt (true thickness map). Contour interval = 10 ft.

6.3 Reservoir Characterization

PAGS initiated this task during the second quarter, organizing its efforts into three categories of activity: (1) legacy data compilation, (2) petrophysical analyses; and (3) thin section examination. Progress on each effort is reported below.

2.3.1 Legacy Data

PAGS has identified certain reports prepared by the Midwest Regional Carbon Sequestration Partnership (MRCSP) (i.e., Wickstrom et al., 2005; Carter et al., 2010; and Carter et al., 2012; and Lewis, 2013) and others (i.e., Riley and others, 1993; Laughrey and Harper, 2012) that contain relevant reservoir information for some of this Study's deeper geologic intervals – namely, the Oriskany Sandstone, Salina Group, Newburg sandstone, Clinton-Medina Group/Tuscarora Sandstone, and Rose Run/Gatesburg sandstones. These reports address various aspects of reservoir character, including lithology, thickness, nature of contacts, porosity, permeability, pore morphology and reservoir trapping mechanisms. In addition, PAGS has identified certain chapters of the Atlas of Major Appalachian Gas Plays (Roen and Walker, 1996) that are relevant to this Study. Legacy data from these important references will be compiled by geologic interval in the coming quarter.

2.3.2 Petrophysical Analyses

PAGS will utilize the geologic and geophysical log data in the Master PETRA[®] project to prepare calculations of gross and net thicknesses for all geologic intervals of interest in the AOI, and average porosity and porosity-ft values for the depleted gas sand intervals. This work will be conducted in the coming quarter, after the Master PETRA[®] Project has been finalized by OGS.

2.3.3 Thin Section Examination

Although this Study will not obtain new geologic samples for the purposes of reservoir characterization, PAGS has offered to perform qualitative thin section analyses for the depleted gas sand intervals associated with the project. PAGS queried Research Team members to determine if they had existing thin sections for any of these intervals and/or rock core that might be sampled to prepare new thin sections. A summary of the input provided by each state is given below and in Table 2.3.1.

Ohio

OGS reviewed its extensive core and thin section inventory, and identified several thin sections associated with geologic intervals of interest in the Ohio portion of the AOI. Following discussions with PAGS, 11 existing Rose Run thin sections and 10 thin section blanks (billets) were selected and provided to Pennsylvania for further analysis (Table 2.3.1).

Pennsylvania

There is only one well location within the Pennsylvania portion of the AOI that both has rock core samples and penetrates any of this Study's geologic intervals of interest. This well, J&L Steel #1 (API No. 37-007-00007), was drilled through the Oriskany Sandstone, and has already been analyzed for porosity and permeability by a commercial laboratory. PAGS has decided to report these laboratory-derived data for this location, rather than prepare qualitative estimates of porosity using thin sections.

West Virginia

WVGES reviewed its core and thin section inventory, identifying a total of 32 core samples from three wells associated with geologic intervals of interest within the West Virginia portion of the AOI. WVGES provided rough-cut samples to PAGS, which were taken from the Oriskany Sandstone in Lewis and Wood counties, and the Keener to Berea interval in Wetzel County. In addition, WVGES identified 42 existing thin sections from wells penetrating either the Venango sands or Newburg sandstone interval. Of these, PAGS cut billets from 28 samples for thin section preparation and analysis, and selected an additional 15 existing thin sections for analysis.

	Thin Sections			
State	Existing	New	Well Location/API No.	Geologic Interval(s)
OH		10	Denny #1-2468/34-029-20592-0000	Gatesburg/Rose Run
ОН	6		Aristech Chemical Co. #4/ 34-145-60141-	Gatesburg/Rose Run
	4		0000	Gatesburg/Rose Run
	1		Kittle #11125/34-115-21249-0000	Gatesburg/Rose Run
			Trepanier #1/34-079-20102-0000	
WV		14	Patty Potts & Gloria Nice #1/47-103-00614	Keener to Berea
		11	Darrell Matheny #2/47-107-01266	Oriskany Sandstone
		3	J.B. Lovett #2/47-041-00057	Oriskany Sandstone
WV	3		Peter Horner #9/47-095-00741	Venango sands
	8		L.S. Hoyt #100/47-103-01685	Venango sands
	4		J. Woodrum #A-2/47-039-02112	Newburg sandstone

Table 2.3.1. Thin sections identified for examination by PAGS.

6.4 Ranking & Recommendations

Determination of ranking criteria is scheduled to begin in month 8 and will be followed by ranking of potential storage sites, scheduled to begin in month 10 of the Study.

3.0 ADMINISTRATION & TECHNOLOGY TRANSFER

3.1 Team Communication

3.1.1 User Groups

Communication within and among all Consortium member groups is essential to the success of this Study, as is the efficient, yet secure, assembly and transfer of information. For the purposes of this Study, lines of communication and data sharing are divided into three broad User Groups:

<u>Research Group</u>: Members of the Ohio, Pennsylvania and West Virginia Geological Surveys and the NRCCE

Industry Group: Representatives from organizations entered into agreement to support research efforts

<u>Advisory Group</u>: Small subset of individuals with professional experience that can be used to guide Research Group efforts. The Advisory Group is currently comprised of the following members:

Brian Anderson, WVU Energy Institute Indrajit Bhattacharya, AEP Ray Boswell, NETL Dennis Carulli, DC Energy Consultants Tom Eyermann, Mountaineer NGL Michael Goodman, Chevron Peter Swift, EQT

3.1.2 Email Communication

Email listservs for each User Group have been established through the WVGES email provider, WVNet. The Research Group listserv was distributed in October 2016 and is the primary communication method between researchers. The Industry and Advisory Group listservs were subsequently distributed in November 2016. WVGES is responsible for the continued maintenance and troubleshooting of the email groups.

3.1.3 Monthly Conference Calls

Research team members participate in monthly phone conferences, during which each member of the research team provides a status update on strategy progress to NRCCE.

3.2 Technology Transfer

3.2.1 Semi-Annual Partner Meeting

The West Virginia University Foundation will host an ASH meeting for Research Team members and representatives of the industry partners on March 14, 2017, at the WVU Erickson Alumni Center, Evansdale Campus, in Morgantown, West Virginia. Following an overview of the Study, a research lead from each of the three geological surveys will present a more detailed technical status report on their areas of respective areas of responsibility (i.e., Strategies 1-4).

3.2.2 Public Release of Final Results

The primary technology transfer event will be a full-day workshop at the end of the project period, co-hosted by the Petroleum Technology Transfer Council's Appalachian Basin Regional Lead Organization (i.e., WVU), during which results will be made available to the public.

3.3 Reporting

3.3.1 Quarterly Reports

During early October 2016, written reports from all Research Team members were compiled into the first quarterly report, which was then submitted to the Benedum and WVU foundations, the WVU

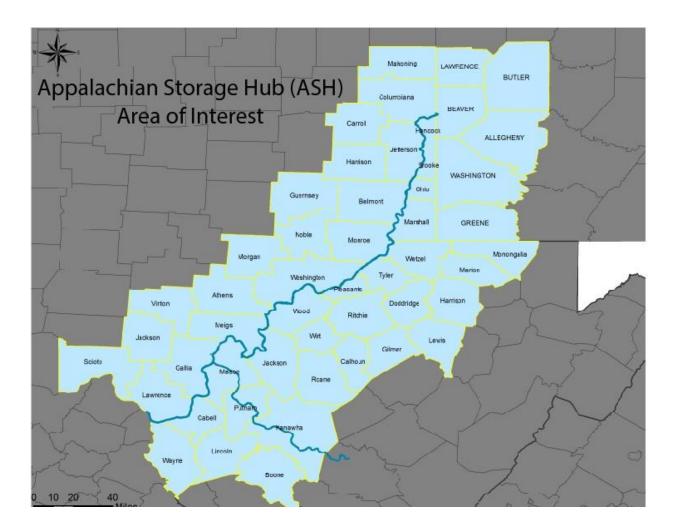
Research Corporation and the WVU Energy Institute. The report also was made available to Industry Partners and members of the Advisory Board through the Study website.

3.3.2 Final Report

A draft final report will be produced by the end of July 2017 and provided to our sponsors and partners for review and comment. A final version will be produced by the end of August, and released to the public following a technology transfer workshop for the formal release of the data, tentatively scheduled in early September.

4.0 FINANCIAL UPDATE

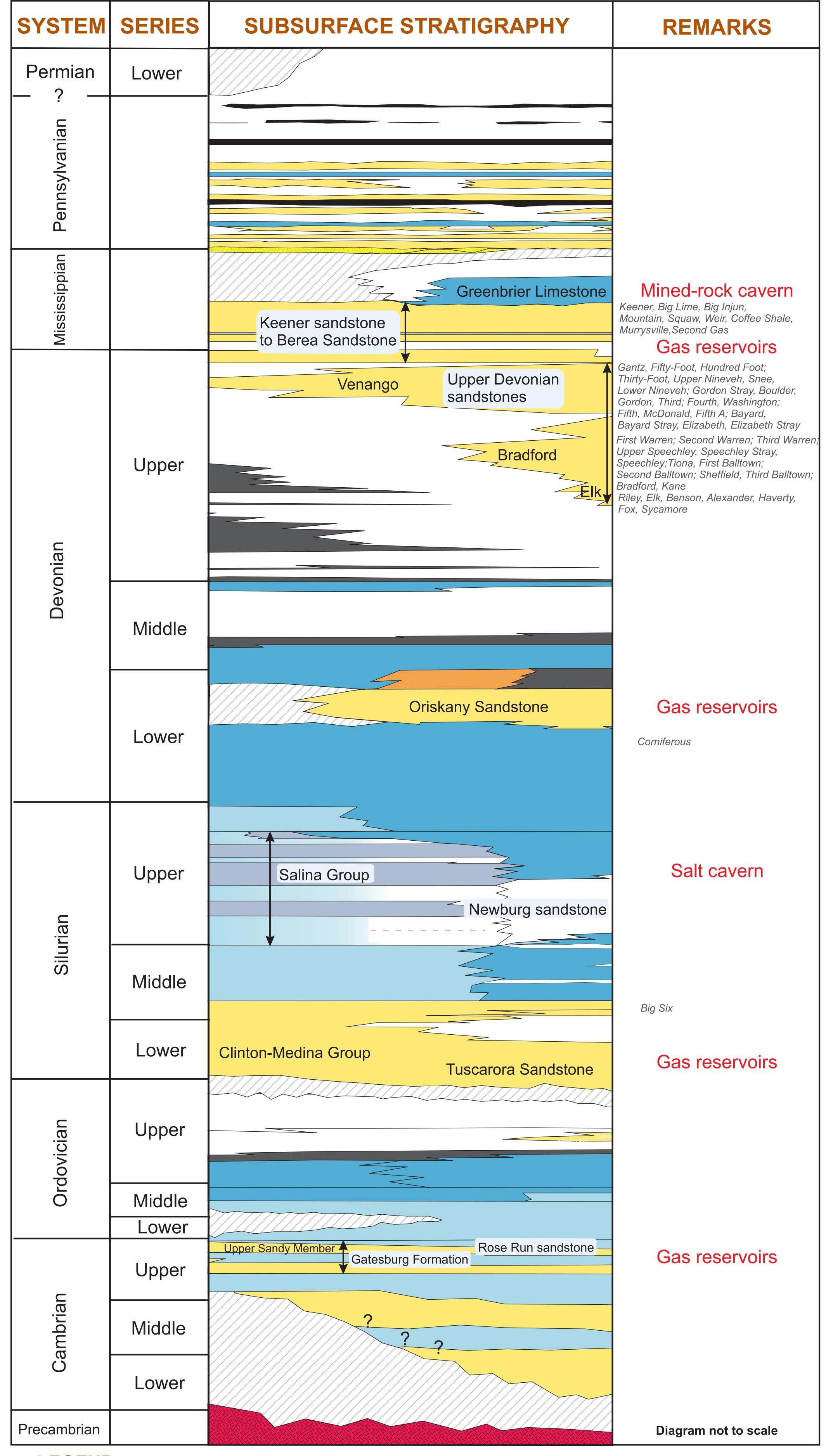
Cumulative expenditures during the first and second quarters of this one-year project are provided below.


CATEGORY	Funded	Expended	Remaining
Salaries/Fringe	\$17,000		\$17,000
Benefits			
Supplies	\$200		\$200
Travel – includes	\$2,800		\$2,800
team meeting costs			
Analytical			
Other - Subcontracts	\$180,000	\$23,437	\$156,563
In-kind match	\$60,000	\$47,082	\$12,918
Total	\$260,000	\$70,519	\$169,481

5.0 **REFERENCES CITED**

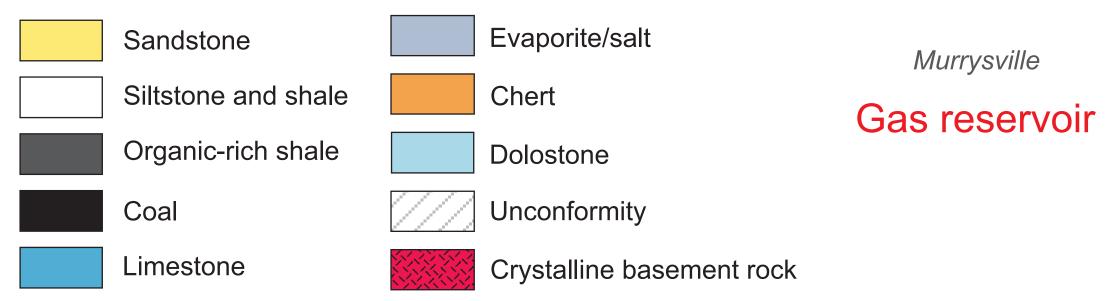
- Carter, K.M. and others, 2010, Characterization of geologic sequestration opportunities in the MRCSP region: Middle Devonian-Middle Silurian formations: Period of performance—October 2005– October 2010: DOE Cooperative Agreement No. DE-FC26-05NT42589, 350 p.
- Carter, K.M. and others, 2012, Refinement of characterization of geologic reservoirs/seal systems: Task 1.1a interim report: Period of performance—October 2010–March 2012: DOE Cooperative Agreement No. DE-FC26-05NT42589, 302 p.
- Ettensohn, F.R., 2009, The Mississippian of the Appalachian Basin, *in* Greb, S.F. and Chestnut, Jr., D.R. eds., Carboniferous of the Appalachian and Black Warrior basins: University of Kentucky, Kentucky Geological Survey Special Publication 10, Series XII, p. 22-31.
- Laughrey, C.D. and J.A. Harper, 2012, Upper Cambrian Gatesburg Formation of central and western Pennsylvania, *in* Derby, J.R., R.D. Fritz, S.A. Longacre, W.A. Morgan, and C.A. Sternbach, eds., The great American carbonate bank: The geology and economic resources of the Cambrian – Ordovician Sauk megasequence of Laurentia: AAPG Memoir 98, p. 1165 – 1194.
- Lewis, J.E., 2013, Evaluation of the Newburg Sandstone of the Appalachian Basin as a CO₂ geologic storage resource: Environmental Geosciences, v. 20, no. 4, pp. 137-150.
- Riley, R.A. and others, 1993, Measuring and predicting reservoir heterogeneity in complex deposystems: The Late Cambrian Rose Run sandstone in eastern Ohio and western Pennsylvania: DOE Cooperative Agreement No. DE-AC22-90BC14657, 257 p
- Roen, J.B., and B.J. Walker, eds., The atlas of major Appalachian gas plays: West Virginia Geological and Economic Survey Publication 25, 201 p.
- Wickstrom, L.H., and others, 2005, Characterization of geologic sequestration opportunities in the MRCSP region, phase I task report: Period of performance—October 2003–September 2005: DOE Cooperative Agreement No. DE-PS26-05NT42255, 152 p.

6.0 APPENDICES


6.1 Appalachian Storage Hub (ASH) Area of Interest

6.2 Regional Subsurface Rock Correlation Diagram (next page)

REGIONAL SUBSURFACE ROCK CORRELATION DIAGRAM APPALACHIAN STORAGE HUB PROJECT


9/15/2016

Drillers' Sand Names

Type of potential storage

LEGEND

6.3 Project Milestone Chart (revised from initial proposal)

Strategy 1: Data Collection		
 Identify and assemble well log and core data 	Month 1	Month 2
Identify previous studies of interest	Month 1	Month 2
Create a project database (format, prototype)	Month 1	Month 2
Strategy 2: Stratigraphic correlation of key units		
Develop cross sections of the Salina Formation	Month 3	Month 8
Develop cross sections of the Greenbrier Formation	Month 3	Month 8
Develop cross sections of the Keener to Berea Interval	Month 3	Month 8
Develop cross sections of the Upper Devonian Sandstones	Month 3	Month 8
Develop cross sections of the Oriskany Sandstone	Month 3	Month 8
Develop cross sections of the Clinton-Medina through Tuscarora Interval	Month 3	Month 8
• Develop cross sections of the Rose Run and Upper Sandy Member of the Gatesburg Formation	Month 3	Month 8
Strategy 3: Map the thickness, extent, and structure of potential storage units in the study area		
Map the Salina Formation	Month 5	Month 7
Map the Greenbrier Limestone	Month 5	Month 7
 Map the Keener-Berea, Upper Devonian, Oriskany, Clinton-Medina, and Gatesburg Formations 	Month 5	Month 7
Strategy 4: Conduct studies of reservoir character		
Characterize potential storage intervals in the Salina Formation	Month 5	Month 8
Characterize potential storage intervals in the Greenbrier Formation	Month 5	Month 8
 Characterize potential storage pools in gas-depleted sandstone reservoirs 	Month 5	Month 8
Strategy 5: Develop ranking criteria for potential storage zones		
• Determine criteria and weighted priority of potential storage zones	Month 8	Month 9
Strategy 6: Recommendations		
Rank all candidates within each category	Month 10	Month 11
• Rank the top candidates in each category	Month 10	Month 11
Strategy 7: Suggestions for engineering follow-up study		
Make suggestions for additional field and lab studies	Month 10	Month 11
Strategy 8: Project management and technology transfer		
Project management	Month 1	Month 12
Final Report	Month 11	Month 12
Technology transfer		Month 12+ ongoing

6.4 Study Members

Company Partner List

AEP		
Mark Dempsey	540-985-2900	medempsey@aep.com
Matt Usher	614-716-3262	mtusher@aep.com
Indrajit Bhattacharya*		ibhattacharya@aep.com
Antero		
Kevin Ellis	304-869-3405	kellis@anteroresources.com
Blue Racer		
Marc Halbritter	214-580-3709	MHalbritter@caimanenergy.com
Charleston Area Alliance		
Matt Ballard	304-340-4253	mballard@charlestonareaalliance.org
<u>Chevron</u>		
Renee Jones	412-865-1591	renee.jones@chevron.com
Mike Goodman*	412-865-3115	mgoodman@chevron.com
Brian Lipinski	412-865-3446	blipinski@chevron.com
<u>Dominion</u>		
Bob Orndorff		robert.c.orndorff@dom.com
John Love		john.m.love@dom.com
EQT		
Ellen Rossi	412-553-7703	erossi@eqt.com
Peter Swift*	281-202-5537	pswift@eqt.com
First Energy		
Paul Boulier	216-363-5402	pboulier@teamneo.org
Pat Kelly	440-221-9095	kellyp@firstenergycorp.com

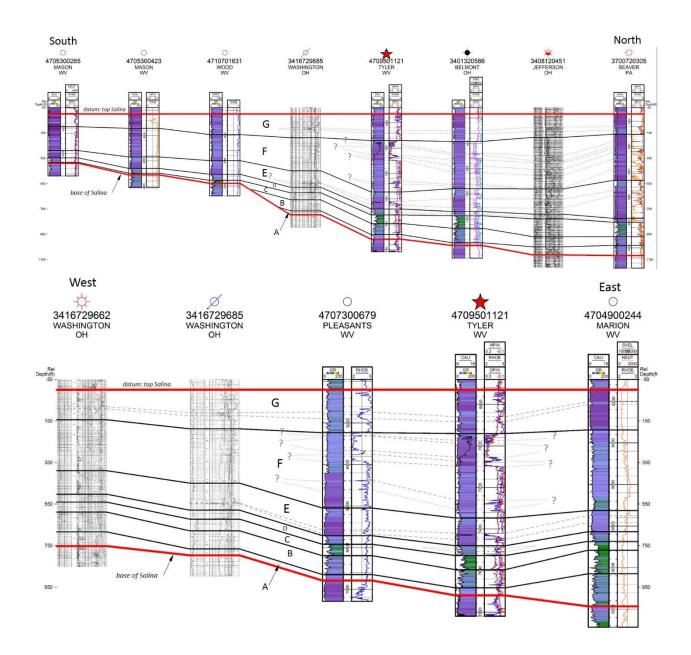
Lisa Nentwick	724-453-3438	<u>nentwickl@firstenergycorp.com</u>	
Mountaineer NGL Storage LLC			
David Hooker	720-318-9738	dhooker@mngls.com	
Thomas Eyermann*	573-783-4672	tjeyermann@mngls.com	
Noble Energy			
Stacey Brodak		Stacey.Brodak@nblenergy.com	
<u>Southwestern</u>			
Maribeth Anderson	304-389-6802	maribeth_anderson@swn.com	
XTO Energy			
Steve Forde	724-553-4244	Steve_Forde@xtoenergy.com	
WVONGA			
Anne C. Blankenship	304-343-1609	ABlankenship@wvonga.com	
Rebekah Hogue	304-343-1609	rhogue@wvonga.com	
	Observers/	Guests	
<u>Benedum</u>			
William (Pat) Getty	412-246-3642	wgetty@benedum.org	
<u>Matrix</u>			
Kevin DiGregorio	304-437-4295	kevindig@suddenlink.net	
Steve Hedrick		steven.hedrick@matricinnovates.com	
<u>Spilman Thomas</u>			
Scott Rotruck	304-685-6109	srotruck@spilmanlaw.com	

WVU Foundation/University

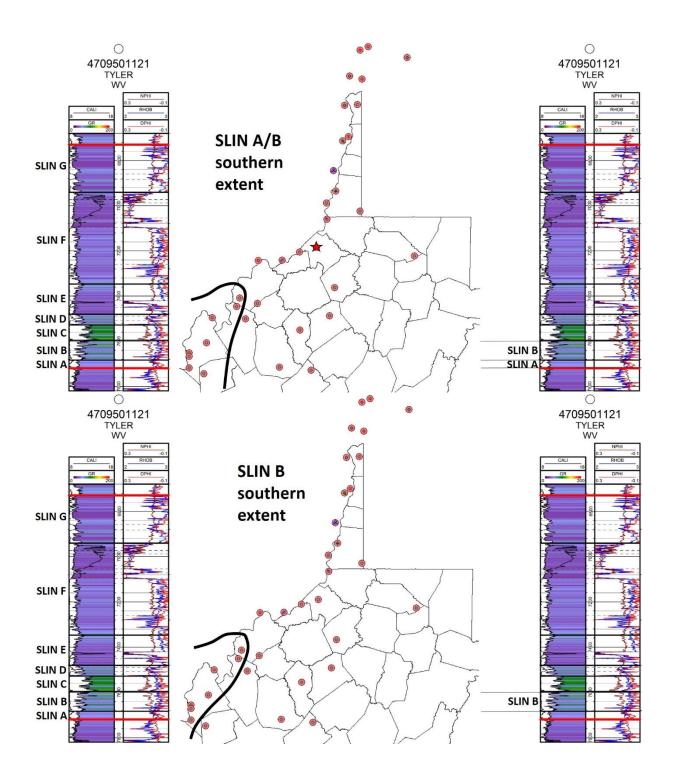
Loreta Mascioli	304-284-4074	LMascioli@wvuf.org
Jack Thompson	304-293-9416	jack.thompson1@wvu.edu

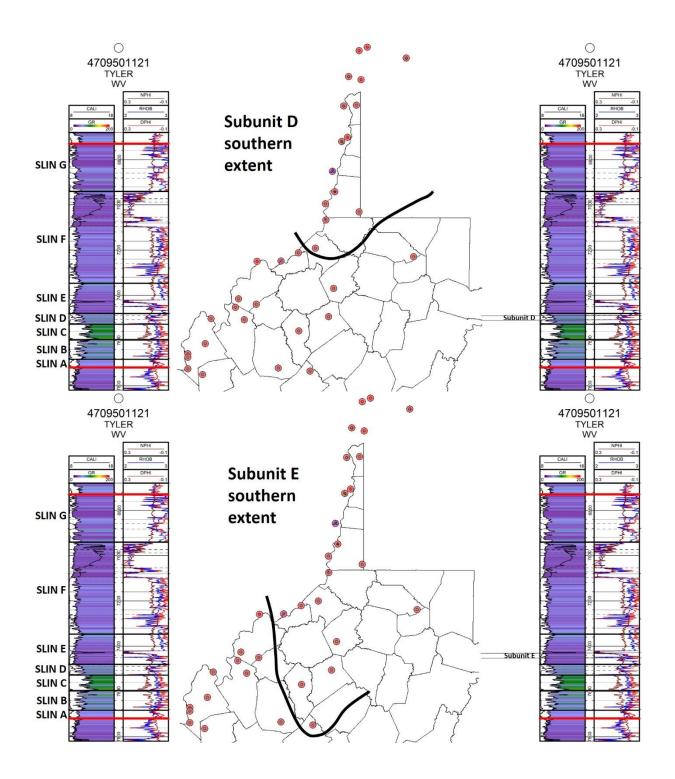
Research Team

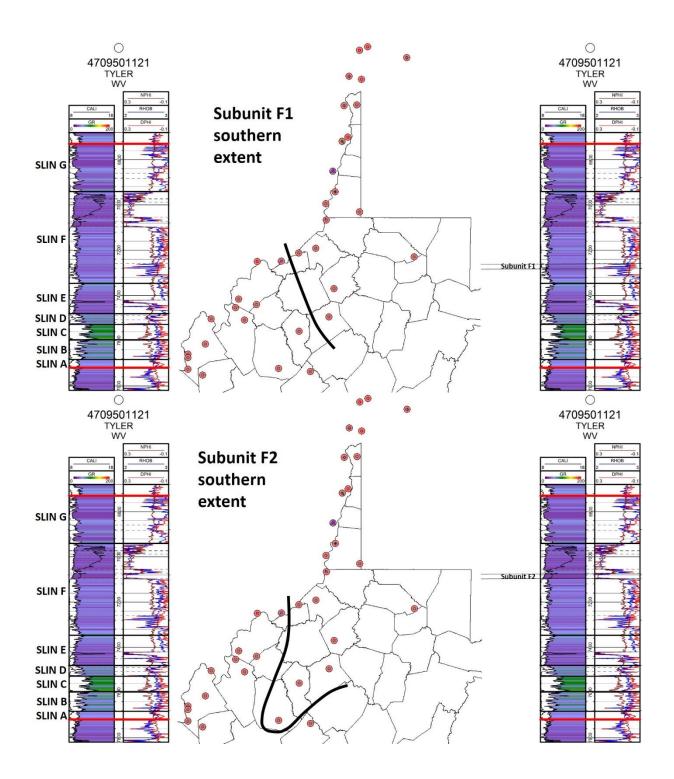
Ohio Geological Survey

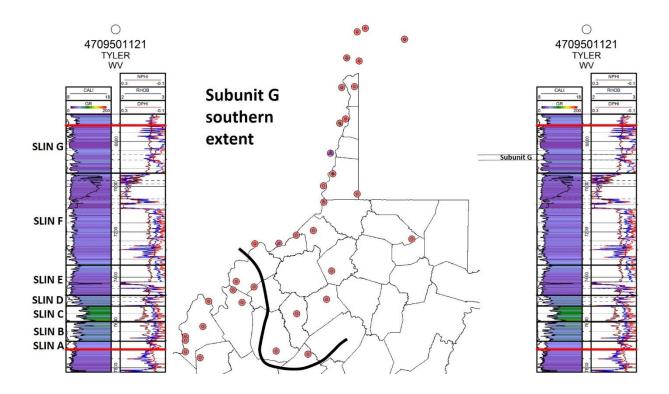

Mike Angle	614-265-6602	mike.angle@dnr.state.oh.us			
Mohammad Fakhari	614-265-6584	mohammad.fakhari@dnr.state.oh.us			
Kyle Metz	614-265-6624	kyle.metz@dnr.state.oh.us			
Michael Solis	614-265-6597	michael.solis@dnr.state.oh.us			
Pennsylvania Geological Survey					
Kristin Carter	412-442-4234	krcarter@pa.gov			
Brian Dunst	412-442-4230	bdunst@pa.gov			
West Virginia Geological Survey					
Jessica Moore	304-594-2331	jmoore@geosrv.wvnet.edu			
Phil Dinterman	304-594-2331	pdinterman@geosrv.wvnet.edu			
Gary Daft	304-594-2331	gdaft@geosrv.wvnet.edu			
Michael Hohn	304-594-2331	hohn@geosrv.wvnet.edu			
Michele Cooney	412-503-4676	Michele.Cooney@aecom.com			
<u>West Virginia University</u>					
Douglas Patchen	304-293-6216	doug.patchen@mail.wvu.edu			

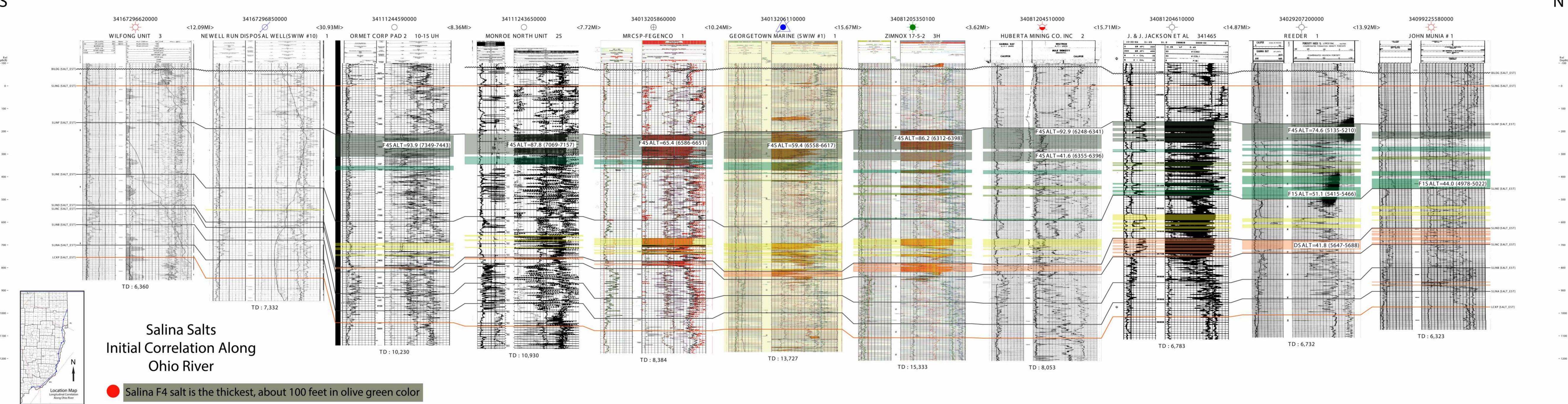
Additional Advisory Board Members*


DC Energy Consultants


Dennis Carulli*	724-255-6527	dcenergyconsultants@comcast.net
Ray Boswell*	412-386-7614	Ray.Boswell@NETL.DOE.GOV
Brian Anderson*	304-293-9334	brian.anderson@mail.wvu.edu


*Advisory Board members, including several from partner companies




6.5 Preliminary Salina Group Mapping Products6.5.1 West Virginia Cross Sections and Extent Maps

