2.1 and 2.4 Mag. Quakes, Richlands, Virginia - 2/11/2021

M 2.4 Mine Collapse - 9 km N of Richlands, Virginia

Administrative Region

USA Region Virginia

Officed States

Richlands, Virginia, United States
9.4 km (8.5 km) \$

Bluefield, West Virginia, United States
5.2 km (3.5 m) ExE

Bristol, Virginia, United States
7.2 km (45.2 m) SSW

Bristol, Tennessee, United States
7.2 km (45.5 m) SSW

Charleston, West Virginia, United States

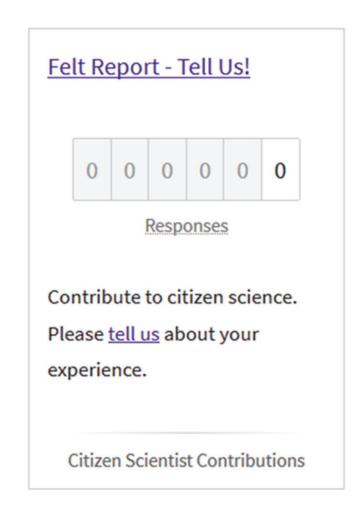
Tectonic Summary

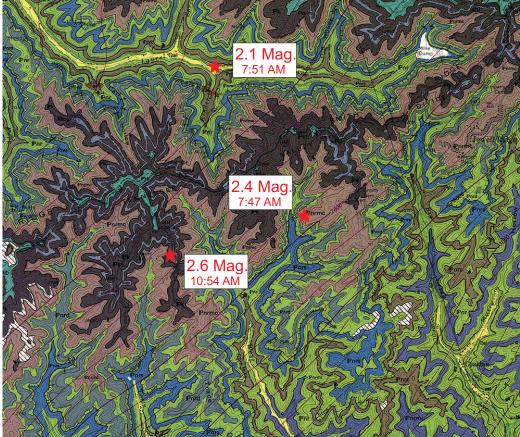
Earthquakes in the Stable Continental Region

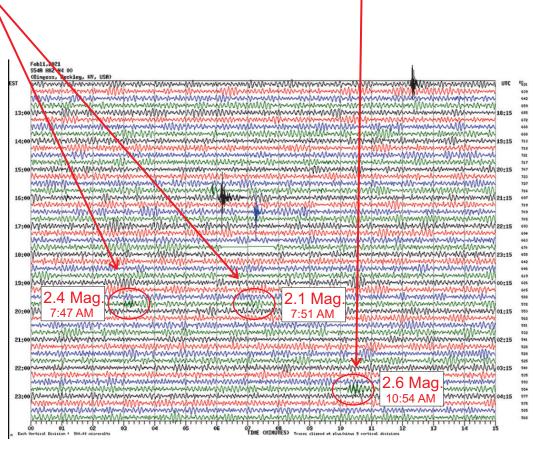
Natural Occurring Earthquake Activity

Most of North America east of the Rocky Mountains has infrequent earthquakes. Here and there earthquakes are more numerous, for example in the New Madrid seismic zone centered on southeastern Missouri, in the Charleroux-Kamouraska seismic zone of eastern Quebec, in New Fignland, in the New York - Philadelphia - Wilmington urban corridor, and elsewhere. However, most of the enormous region from the Rockies to the Atlantic can go years without an earthquake large enough to be felt, and several U.S. states have never reported a damaging earthquake.


Earthquakes east of the Rocky Mountains, although less frequent than in the West, are typically felt over a much broader region than earthquakes of similar magnitude in the west. East of the Rockies, an earthquak on the west coast. It would not be unusual for a magnitude 4.0 earthquake in eastern or central North America to be felt by significant percentage of the population in many communities more than 100 km (60 mi) from its source. A magnitude 5.5 earthquake in eastern or central North America might be felt by much of the population out more than 500 km (300 mi) from its source. Earthquakes east of the Rockies that are centered in populated areas and large enough to cause damage are, similarly, likely to cause damage out to greater distances than earthquakes of the same magnitude centered in western North America.


Most earthquakes in North America east of the Rockies occur as fauting within bedrock, usually miles deep. Few earthquakes east of the Rockies, however, have been definitely linked to mapped geologic fautis, in contrast to the situation at plate boundaries such as California's San Andreas fault system, where scientists can commonly use geologic evidence to identify a fault that has produced a large earthquake and that is likely to produce large future earthquakes. Scientists who study eastern and central North America earthquakes often work from the hypothesis that modern earthquakes occur as the result of slip on preexisting faults that were formed in earlier geologic eras and that have been reactivated under the current stress conditions. The bedrock of Eastern North America is, however, laced with faults that were active in earlier geologic eras, and few of these faults are known to have been active in the current geologic era. In most areas east of the Rockies, the likelihood of future damaging earthquakes is currently estimated from the frequencies an sizes of instrumentally recorded earthbuakes of commental in historical records.


Induced Seismicity


As is the case elsewhere in the world, there is evidence that some central and eastern North America earthquakes have been triggered or caused by human activities that have altered the stress conditions in earth's crust sufficiently to induce faulting. Activities that have induced file tearthquakes in one geologic environments have induced may depend expended in the earth's crust, extraction of fluid or gas, and removal of rock in mining or quarrying operations. In much of eastern and central North America, the number of earthquakes suspected of having been induced is much smaller than the number of natural earthquakes, but in some regions, such as the south-central states of the U.S., a significant majority of recent earthquakes are thought by many seismologists to have been human-induced. Even within arose with many human-induced earthquakes, however, the activity that a persistingly and the colorion may be taking been at many other locations without inducing fet earthquakes. In addition, regions with frequent induced earthquakes may also be subject to damaging earthquakes that would have occurred independently of human activity. Making a strong scientific case for a causative link between a particular huma eartivity and a particular sequence of earthquakes higherially involves special studies devoted specificatly to the question. Survestigations usually address the process by which the suspected thingering activity might have significantly altered stresses in the bedrock at the earthquakes ource, and they commonly address the ways in which the characteristics of the suspected human-triggered earthquakes differ from the

Small (2.1 and 2.4 Mag.), very shallow (0 Km) quakes now classified as coal mine collapse. Preceding a 2.6 Mag. quake. Not felt in West Virginia.

Beckley, WV Seismic Signal