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1. INTRODUCTION 
 

The purpose of this case study is to illustrate some of the methods I outline in my 
book on geostatistics (Hohn, 1999).  In particular, this paper outlines the calculation 
of declustered histograms and weights, the normal score transform, ordinary kriging 
of normal scores, backtransformation, sequential Gaussian simulation, and calculation 
of confidence envelopes from kriging variance and from a set of simulations.  All 
geostatistical calculations are carried out with GSLIB routines (Deutsch and Journel, 
1998); each section of this case study lists the specific routines used.  

The data were obtained from a figure in a paper by Gumati and Kanes (1985), 
and comprise 38 measurements of the thickness of a Paleocene clastic unit in Libya.  I 
originally selected this dataset because of the modest number of observations, and the 
relatively close spacing of observations relative to variation in thickness, yielding a 
simple variogram with small or negligible nugget effect.  These characteristics of the 
dataset also make it useful for illustrating the basics of geostatistics, and providing a 
test set for students of geostatistics to test their understanding.  Data may be 
downloaded from: http://www.wvgs.wvnet.edu/www/GeostatPetGeol.html#data 
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Figure 1. Thickness of a Paleocene clastic interval in Libya. 

 
2. UNIVARIATE STATISTICS AND DECLUSTERING 

 
Observed values of clastic thickness appear to be distributed evenly across the study 

area (Fig. 1).  One must also consider whether observations are biased toward one part of 
the histogram of possible values.  This occurs easily in development of oil and gas fields 
where naturally enough, a company is interested in wells with the largest potential 
production, and there is a bias toward drilling wells in areas considered most favorable, 
such as those with the thickest reservoir rock or highest average permeability.  In a 
mineral survey, environmental assessment, or ecological sampling, one can set up the 
sampling pattern to avoid sampling parts of the distribution preferentially.  In the 
petroleum business, previously-drilled wells comprise the “sample”, and locations of 
these wells are not selected to help the geostatistician; rather, the more successful the 
geologist or engineer in selecting well sites, the more the wells represent preferential 
sampling. 

Geostatistical methods that use a transformation of data to a normal or near-normal 
distribution, or use the observed histogram, are going to be affected by bias in the 
observations.  In this example, kriging of normal scores and sequential Gaussian 
simulation are to be used, both requiring a transformation of raw data to a normal 
distribution, followed by a back transform.  Checking for bias is in order. 
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To do so, one can draw a map of the variable under analysis, and compare spatial 
patterns in the variable against sample location; ordinary kriging of the raw data should 
be adequate for this.  If there is no bias, then there should be no clustering of data in high- 
or low-valued areas.  This is a rather clumsy approach that depends a lot on judgment; it 
can be formalized by computing a declustered mean as described by Journel (1983).  The 
study area is divided into square or rectangular nonoverlapping cells, the average 
computed for each cell from observations falling within it, and the results used to 
compute a grand average.  The procedure is repeated for cells of different sizes, and 
results are plotted on a graph (Fig. 2).    
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Figure 2. Relationship between grand mean of thickness averaged within cells and 

size of cells. 

 
When observations are clustered in areas of high values, the graph exhibits a 

minimum for cell sizes larger than 0.  In contrast, preferential sampling in low-valued 
regions results in a maximum in the graph, the case with the clastic thickness data.  
GSLIB procedure declus provides data for such a plot, and also declustering weights to 
be used while transforming to and from a normal distribution.  In routines that compute 
frequencies, declustering weights are used to downweight samples in cells with a 
relatively large number of observations. Comparison of the histogram of unweighted 
thickness data (Fig. 3) and the weighted histogram (Fig. 4) shows that indeed, the lower 
tail of the latter has been downweighted. 
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Figure 3. Histogram of clastic thickness. 
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Figure 2. Histogram of declustered data. 
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Figure 3. Variogram of normal scores of clastic thickness data. 

 
 3. VARIOGRAPHY 

 
An omnidirectional variogram was calculated from normal scores of the observed 

thicknesses (Fig. 5).  The number of observations was deemed too small for computing 
directional variograms with any degree of confidence.  An exponential model was fitted 
with an effective range of 7.5, unit sill, and no nugget effect. 

Normal scores and variogram values were computed with GSLIB routines nscore 
and gamv.  
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Figure 4.   Kriged thickness of clastic Interval. 

  
 

4. KRIGING 
 

Normal scores of thickness and the variogram model were used in ordinary kriging 
to calculate estimates on a regular grid.   At each grid location, confidence envelopes 
were determined by adding the estimation standard deviation to the estimate for the upper 
limit, and subtracting for the lower limit. Estimates and the upper and lower limits were 
then back-transformed to the original units of thickness (Figs. 6-8).   

The resulting confidence interval for each estimate is analogous to that obtained by 
ordinary kriging of the raw data, but not quite the same.  Because of the nonlinear 
transform of thickness data to the normal scores before the geostatistical operations, the 
confidence interval is not necessarily symmetric about the estimate in the original 
measurement unit.  For instance, one would expect distributions with a long positive tail 
to yield an upper confidence limit farther from the estimate than the lower limit. 

Ordinary kriging was performed with GSLIB routine kt3d, and backtransform with 
routine backtr. 
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Figure 5. Lower “confidence 
limit” calculated by subtracting 
estimation standard deviation 
from kriged estimates of 
thickness. 

 

 
 
 
 
 
 
 
 

 

 

Figure 6. Upper “confidence 
limit” calculated by adding 
estimation standard deviation 
from kriged estimates of 
thickness. 
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Figure 7. One simulation of clastic thickness. 

 
5. SIMULATION 

 
Sequential Gaussian simulation computes a value at each node that honors the 

variogram of normal scores and the transformed thickness data (Fig. 9).   Simulated 
values are backtransformed to the original thickness units.  Although only one simulation 
is shown, 100 were calculated to provide sufficient data for summary statistics.   

For each grid location, the averaged simulated value should equal the kriged estimate 
because the same variogram and conditioning data are used, and ordinary kriging was 
selected in the simulation routine.  Comparison of the map of kriged estimates (Fig. 6) 
and the average of the simulations (Fig. 10) shows this to be true for regions of thin 
clastics, less so in thicker areas such as in the northeastern corner.  This could be related 
to how values are simulated in the upper tail of the distribution, or the relative lack of 
observations. 

 
 
 

Fig. 10.  Average of 100 
simulations of thickness. 
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Confidence limits analogous to those from kriging can be obtained by calculating for 
each grid location the lower 16th and upper 84th percentile of simulated values for 
thickness (Figs. 11 and 12).  
 

 
Fig. 11. Lower 16th percentile of thickness simulations. 

 
 
 

 
 

Fig. 12. Upper 84th percentile of thickness simulations. 
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